

Objectives of study:

- Students understand the basic principles of ergonomics.
- Students consider the human factor in <u>analyzing</u>, <u>evaluating</u>, <u>designing</u> and <u>improving</u> work system.

References:

- Sritomo Wignjosoebroto, Studi Gerak dan Waktu.
- · Christopher D. Wickens, et.al, An Introduction to Human Factors Engineering
- Mustafa B. Pulat, Fundamentals of Industrial Ergonomics
- Other ergonomics / human factor books.
- http://www.yankodesign.com/

Piciure of life

Ergonomics (Human Factors)

ergon = work nomos = laws Ergonomics (or human factors) is the scientific discipline concerned with the understanding of the interactions among humans and other elements of a system, and the profession that applies theoretical principles, data and methods to design in order to optimize human well being and overall system performance. (International Ergonomics Association, www.iea.cc)

- ☑ The study of man's relationship with his or her workplace.
- ☑ Fitting the task to the person rather than forcing him/her to adapt to the work environment.
- ☑ Designing the workplace to prevent occupational injury and illness.
- ☑ Discovering the capabilities and limitations of the human body.
- ☐ The art and science that addresses workers' job performance and well-being in relation to their job tasks, tools, equipment and environment.
- ☑ The study of the relationship between people and machines or between employees and their environment.
- ☐ The study of the interaction between the worker and the process at the workplace.

Wojciech Jastrzębowski

ERGONOMJI

czyli NAUKI O PRACY

opartej na prawdach poczerpniętych z Nauki Przyrody

AN OUTLINE OF ERGONOMICS,

THE SCIENCE OF WORK

based upon the truths drawn from the Science of Nature

1857

→ What is ergo system and its components ?

→ How far will we analyze the ergo system?

The Cycle of Human Factors

- Point A identifies a cycle when human factors solutions are sought because a problem (e.g. accident or incident) has been observed in the human-system interaction.
- Point B identifies a point where good human factors are applied at the beginning of a design cycle.

Simple Ergo System

Complex Ergo System

Organizational Level

Group Level

Individual Level

Organizational Design: Structure & Processes

- Policies
- HR; technology
- Sr. Management support

Personnel Subsystem

 Information systems training

Technological Subsystem

Information systems (IS)

Effectiveness Outcomes

- Productivity
- Customer satisfaction
- Employee satisfaction
- Balanced score card

Psychosocial Factors & Professionalism

- Team work synergy
- Job design
- Distributed team
- Managerial support

Technological Subsystem

Groupware

Effectiveness Outcomes

- Group effectiveness
- Group collaboration
- Teamwork
- Performance

External Environment

- Culture
- Politics
- Market
- Global Competition
- Migration of capital

Physical Environment Subsystem

- Workstation design

Technological Subsystem

 Communication lines/cables

Psychosocial Factors

- Balanced work/personal
- Social Isolation

Effectiveness Outcomes

- Health & well-being
- Job satisfaction
- Workplace satisfaction
- Workplace comfort
- Reduced stress
- Performance

Analyze individual level (micro), implement to group level

Macro

Micro

ERGONOMICS IS IMPORTANT!!

ERGONOMICS PLAYS A ROLE IN APPROXIMATELY 50% OF ALL WORKPLACE INJURIES.

ERGONOMICS WILL HELP:

- **☑** Improve quality.
- **☑** Improve absenteeism.
- ☑ Maintain a healthier work force.
- ☑ Reduce injury and illness rates.
- ☑ Acceptance of high-turnover jobs.
- **☑** Workers feel good about their work.
- **☑** Reduce workers' compensation costs.
- ☑ Elevate OSHA compliance to a higher level of awareness.

ERGONOMICS, A MULTIDISCPILNARY APPROACH

THE FOLLOWING DISCIPLINES HAVE PLAYED A ROLE IN DEVELOPMENT OF THE WORK STATION:

- ☑ Anatomy → body dimension, posture
- \square Physiology \rightarrow O_2 consumption
- ☑ Psychology → stress reduction
- ☑ Biomechanics → static work
- ☑ Physical environment → lighting
- ☑ Industrial Design → layout for work table
- ☑ Safety & Health Engineering → electricity

Syllabus of Ergonomics

15% QUIZ 1 15% QUIZ 2 20% TUGAS 15% PRESENTASI 35% UAS

Week	Subject
1	A Glance of Ergonomics
2	Human Sensory System
3	Cognition and Learning Process
4	Work Physiology
5	Human Error and Basic Safety
6	Quiz 1 (wk 1-5)
7	Engineering Anthropometry
8	Display and Control Design

Week	Subject
9	Biomechanics of Work
10	Manual Material Handling
11	Work Environment / Mental Workload and Stress
12	Quiz 2 (wk 7-11)
13	Group Presentation
14	Group Presentation
15	The Impacts of Bad Ergonomics
16	Macro Ergonomics

